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Abstract

One of the primary aims of a college education is to foster students’ ability to think
critically and analytically. [1] How does this apply to students of computer science?
Many computer science students struggle to master the elemental techniques of
recursion, inferring qualitative patterns from data, and mathematical induction over
countably infinite sets. In this paper we illustrate all of the above while developing
pedagogically rich solutions to a common example used in typical CS curricula:
enumerating the rational numbers. We go deeper than typical curricula to help
students think like computer scientists.

Introduction

In the journey from computer science student to computer scientist, one meets a
number of obstacles, key examples of which are mastering recursion and gaining a
deeper understanding of infinity. To think recursively is an art that requires much
experience to master. While students have some (perhaps not sufficient)
opportunity during their undergraduate years to practice this skill, the same
students typically have less experience dealing with countably infinite sets, and
rarely, if ever, are called upon to develop algorithms that enumerate such sets. Here
we present intuitive yet rigorous solutions to the problem of showing that the
rational numbers comprise a countably infinite set.

Countably Infinite Sets

A countably infinite set has the same cardinality as the natural numbers. To show
that an infinite set is countable, one typically exhibits a bijection between that set
and the natural numbers. A consequence of this mapping is that the elements of the
set in question can be enumerated as a sequence: a,, a,, as, etc.

The set of all strings over an alphabet, £ = {a, b}, for instance, can be intuitively
enumerated as follows:

** ={A,a,b,aa,ab,ba,bb,aaaq, ...}

where A represents the empty string. It is evident what the next string in the
sequence is because we have presented the strings in quasi-lexicographic order (i.e.,
we’ve grouped the strings by length and then alphabetically within each group [2]).
This illustration suffices to convince most people that X* is countably infinite, since
we will visit every string in the set.
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This simple problem presents a convenient opportunity to reinforce computer
science principles by going just a little deeper. Can we find a bijective function that
maps between the natural numbers and the strings of £*? Finding an explicit
mapping helps students to think more like a computer scientist.

One approach (see [3]) is to interpret strings over an alphabet as numerals. The
positions of digits in numerals correspond to a power of the radix the number is
expressed in. For example, the numeral (dy_;dy_; ... d1d;), has the value expressed
by the polynomial d,,_;7%"1 + dy_,7%"2 + --- + d;r + d,. Following this pattern, we
can use the values 1 and 2 for the characters a and b, respectively (i.e., our
coefficients, d;, will have one of the following values: v(a) = 1,v(b) = 2), and
evaluate the associated polynomial to obtain the ordinal for a given string. For
example, for the string bba, we obtain

2
v(b)-2 +v(b)-2+v(a)=24+22+1=8+4+1=13
Hence, bba is the 13t string in the sequence. The empty string, A, has the value 0.

Mapping the other direction, from an ordinal to its associated string, can be
achieved if we can define a function, succ(s), which calculates the lexicographic
successor to the string s. This is not difficult; we merely mimic what we typically do
when adding 1 to a number by hand, as the following Python code illustrates.

sigma = (‘a’,’b’) # Our alphabet
def succ(s):
chars = 1ist(s) # Convert string to a mutable list
i = len(s) -1 # Start with rightmost character
biggest = sigma[-1] # Last (“biggest”) character in alphabet
while i >= 0:
if chars[i] == biggest:
chars[i] = sigmal[@] # Wrap to first/smallest character
i-=1 # Move left to preceding digit
else:
break # Found a non-biggest character
else: # Executes only when loop completes

# Prepend the “smallest character” (non-biggest wasn’t found)
chars = [sigma[0]] + chars

if i >=0: # The string wasn’t all “9’s”
# Increment the number in position i
index = sigma.index(chars[i])
chars[i] = sigma[index+1]

return ''.join(chars) # Return as a string

With this function in hand, we can obtain the string for any ordinal with the
recurrence, s, = succ(s,_1), S = A, which can be rendered in Python as

def nth_str(n):
return "" if n == 0 else succ(nth_str(n-1))
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Another approach to discovering a bijection comes from the observing a pattern in
the following data representing our sequence (starting with v(1) = 1 this time):

A a b aa ab ba bb aaa aab aba abb baa bab bba bbb ..
1 10 11 100 101 1160 111 106060 16001 1010 1011 1100 1101 1110 1111 ..
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 ..

The first row is the sequence of strings; entries in the second row contain the
ordinal in binary notation of the corresponding string above it; and the third row
contains the corresponding ordinals in decimal. There is a pattern that relates the
binary numbers with their associated strings: the bits after the leading 1 have a zero
wherever the associated string has an g, and a 1 where there is a b. Thus our
bijection can be expressed as follows:

String-to-ordinal:
1. Starting with a given string, form a bit string by mapping a to 0 and b to 1
2. Prepend a1 bit
3. Convert the bit string to decimal

Ordinal-to-string:
1. Convert the ordinal to binary
2. Remove the leading 1
3. Form a string by mapping a 0-bit to a and a 1-bit to b.

These mappings are clearly one-to-one and onto, and, of course, are inverses of each
other. Python implementations of these procedures follow.

def s2ord(s):
bits = '1'" + "', join([str(ord(c)-ord('a')) for c in s])
return int(bits,2)

def ord2s(n):
s = bin(n)[3:] # Skip leading "0bl" returned from bin()
return "'.join([{'@':'a',"1l':'b"}[c] for c in s])

Inferring and implementing patterns from data such as in this example is an
important skill in learning to think like a computer scientist.

Enumerating the Positive Rational Numbers

To convince students that the positive rational numbers are countable, we typically
follow Cantor’s diagonal enumeration technique with an infinite table similar to the
following (see Table 1).
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r\c|1 2 3 4..

1 1/111/21/3 | 1/4..
2 |2/1(2/2|2/3]|2/4..
3 |3/1|3/2|3/3]|3/4..
4 |4/1|4/2|4/3|4/4..

Table 1 (r = row, ¢ = column, fraction = E)

The body of this table holds the fractional representation of each positive rational
number many times over (an infinite number of times, in fact). The idea is that if we
can arrange these in a sequence, then the rational numbers, being the subset
containing the unique numbers in this table, will certainly be countable. At this point
we simply traverse each diagonal, starting with 1/1, to enumerate all the values. The
body of the following table (Table 2) contains the ordinals that indicate our order of
traversal along each successive diagonal in turn, in a lower-left-to-upper-right

fashion (i.e, a; = %,az = %,a3 = %,a4 = %,as = %,aﬁ = g,etc.).
r\c| 1|2 |3 |4..

1 13 |6 |10..

2 2|5 |9 |14..

3 |48 |13]19..

4 |7 (12|18 25..

Table 2 — Ordinals of the enumeration corresponding to the numbers in Table 1

Once again we have an opportunity to reinforce students’ mastery of computer
science techniques by discovering an algorithm for the enumeration.

To find the nth rational number in this sequence, we must find the row, r, and
column, ¢, for a given enumeration ordinal, n, which corresponds to the rational

number E For example, for n = 8,7(8) = 3 and ¢(8) = 2, since the 8% number in our
enumeration order is % We can make progress toward a solution for finding rand ¢
by noticing that the ordinals in the first row are the so-called triangular numbers,
k1) ,k = 1. We then proceed by
finding the smallest triangular number, T}, which equals or exceeds n. If n = T}, then
r(n) = 1 and c(n) = k and we are done (e.g.,, ag = i, 6=T; >r(6)=1,.c(6)=3).

If n < Ty, then the row increases and the column decreases by the same amount as
we go backwards down the diagonal to find n. (e.g., forn =5,T; —n=6 -5 =

1,sor(5) =r6)+1=2,c¢(5)=c(6)—1=2—> as =§).

which are the positive numbers of the form
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Since we can easily determine whether a number is triangular, we can find r(n) by
the following recursive algorithm.

 k(k+1)
2

1 =T,
r(n)= =N

r(n+1)+1 otherwise

This relationship holds because row numbers obey the formular(n + 1) = r(n) —
1. The recursion stops when we encounter the next triangular number at the top of
the diagonal.

Likewise, c(n + 1) = c(n) + 1, suggesting the following recursive formula for
column numbers.

k(k+1)
2

k =T =
c(n)= =

cin+1)-1 otherwise

Combining these with a function to test a number for triangularity gives the
following succinct Python implementation yielding the row (numerator) and
column (denominator) for the nth rational number in the enumeration.

def istrinum(n):
k = int((math.sqrt(8*n+1) - 1)/2.0) # Solve T[k] for k
return k if n == k*(k+1)/2 else 0 # 0 => False

def row(n):
return 1 if istrinum(n) else l+row(n+1l)

def col(n):
k = istrinum(n)
return k if k else col(n+l)-1

Inverting The Mapping

Since the relationship between k and T}, is bijective, it can be inverted. We seek,
therefore, a mapping that yields the sequence number, n, as a function of the row
and column: n = f(r, c).

Approach 1
Looking again at Table 2, notice the following relationships as we compare
consecutive horizontal ordinals in the same row, starting with Row 1:

fLo=fA,c—1)+c
f,c0)=f2,c—1)+c+1

}.(T,C)=f(r,c—1)+c+r—1
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Similar relationships hold when comparing consecutive ordinals in the same
column:

frrH)=fr-11)+r—-1
fr,2)=fr—12)+r

}.(T;C)=f(r—1,c)+r+c—2

Since f(1,1) = 1, we can form a recurrence that will work its way to either the first
row or first column, and then eventually to position (1,1), as follows.

1, r=c=1

fr=1LD)+r—-1, c=1
flr,e)=

f,c—D+c, r=1

f(r,c—1)+r+c—1, otherwise

We could have used f(r — 1,c) + r 4+ ¢ — 2 for the last line as well. Here is a Python
implementation of f:

def f(r,c):
if r == 1 and ¢ == 1:
return 1
elif c == 1:
return f(r-1,1) + r-1
elif r == 1:
return f(l,c-1) + ¢
else:

return f(r,c-1) + r+c-1 # Or f(r-1,c) + r+c-2

Approach 2: A Closed Formula

To find a closed formula for f (7, ¢), recall that the largest number at the top of the
d(d+1)

dth diagonal, which is also the top of the dth column, is T; = . The numbers

on the next (i.e., (d + 1)th) diagonal will be the d + 1 numbers, {T; + 1,T; +
2,..T; +d,T; +d + 1}. Note that the summands 1,2, ...,d,d + 1 in the elements of
this set are precisely the column numbers of the corresponding entries on diagonal
d + 1, so we can say that the entries on diagonal d + 1 are the numbersT; +¢,1 <
c<d+1.

Note also that on diagonal d, the sum of the row and column numbers is the constant
d + 1. We can now conclude that a number on diagonal d + 1 is of the form

Td+c=d(d+1)+c=(r+c—2)2(r+c—1)

+c=f(r,c)
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because on diagonal numberd + 1,7 +c=d +2 - d =r + ¢ — 2. To spot-check
that we have figured correctly, note that f(1,1) = 1,f(2,1) = 2,f(1,2) = 3,f(3,1) =
4, etc., as expected.

[t is interesting (and comforting) to note that unwinding the recurrence in Approach
1 (a very tedious process), yields the same formula for f (7, ¢).

[f the way we arrived at this closed formula does not seem sufficiently rigorous for
some, it can be verified by mathematical induction—in this case, two-dimensional
induction.

Mathematical Induction In Two Variables
To prove by mathematical induction a proposition in two discrete variables,
P(m,n), one typically demonstrates the following:

D P@,1)
2) P(1,k)— P(1,k+1)
3) P(h,k)— P(h+1,k)

In other words, we show that the proposition is true for the first (top-left) element,
and then that it remains true whenever we move from there horizontally or
vertically within the grid of (m,n) pairs. In our case, P(r, ¢) is the proposition

f(T, C) _ (r+c—1)2(r+c—2)
numbers for the ordinal n.

n= , where r and c are the corresponding row and column

We first show that P(1,1) is true, that is, f(1,1) = 1 (the first ordinal). We have
f(1,1) = (1+1_1)2(1+1_2) +1=0+1=1. This establishes the base case (formula 1 above).

Now, recall that the elements of the first row are the triangular numbers, which are

1 . . . .
of the form C(C; ), where c is the column number. Then, assuming the induction

hypothesis

C(I+e-1)(1+c=-2)  c(e-1)
f,0)= > +c= > +c= 2

(c+1)(c+2)

we now compute f(1,c + 1) = , which is the next triangular number to the

right on the first row, showing that formula 2) above holds.

To establish 3) above, note that the ordinal in the table in position (r + 1,¢) is
positioned directly below the ordinal in position (7, ¢). The difference between these
two numbers is therefore the length of the diagonal in which (7, ¢) occurs (which on
diagonal d obeys the invariant d = r + ¢ — 1, as noted earlier). For example, the
ordinal 5, which is in position (2,2), is in the 3™ diagonal, and the number directly
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below it in position (3,2) is 8 = 5 + 3. This gives us the relation f(r + 1,¢) =
f(r,c) +r+ c — 1. We will now establish 3) by showing that f(r + 1,¢) = f(r,c) +

r+c—1= w + ¢, using the inductive hypothesis f(r,c) = —(Hc_l)z(”c_z) +
c:

+c-1)(r+c-2
(r < )(r < )+c+r+c—1=

f(r,o)+r+c-1=

2
(r+c—1)(r+c—2)+2(r+c—1)+C= (r+c—1)(r+c—2+2)+c=
2 2

(r+c—;)(r+c) +c QED.

For a discussion on generalized induction, see [4].

Summary

A recent text states, “The single most important skill for a computer scientist is
problem solving. Problem solving means the ability to formulate problems, think
creatively about solutions, and express a solution clearly and accurately. As it turns
out, the process of learning to program is an excellent opportunity to practice
problem-solving skills.” [5] Our goal as computer science educators is to pass on
problem-solving skills using computer algorithms to future generations. The
transition from common, procedural problem-solving approaches to effectively
deriving recursive relationships and proving them by mathematical induction is a
difficult one for most students of computer science. [6] Furthermore, people tend to
better retain and master concepts that they take through a process of discovery and
verification to a complete solution—preferably via working implementations [7].
The examples in this article serve as suitable pedagogical aids in strengthening the
mastery of key ways of thinking in the minds of developing computer scientists.
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